Application of Combination Forecast Model in the Medium and Long term Power Load Forecast
نویسنده
چکیده
The gain of SVC depends upon the type of reactive power load for optimum performance. As the load and input wind power conditions are variable, the gain setting of SVC needs to be adjusted or tuned. In this paper, an ANN based approach has been used to tune the gained parameters of the SVC controller over a wide range of load characteristics. The multi-layer feedforward ANN tool with the error back-propagation training method is employed. Loads have been taken as the function of voltage. Analytical techniques have mostly been based on impedance load reduced network models, which suffer from several disadvantages, including inadequate load representation and lack of structural integrity. The ability of ANNs to spontaneously learn from examples, reason over inexact and fuzzy data and provide adequate and quick responses to new information not previously stored in memory has generated high performance dynamical system with unprecedented robustness. ANNs models have been developed for different hybrid power system configurations for tuning the proportional-integral controller for SVC. Transient responses of different autonomous configurations show that SVC controller with its gained tuned by the ANNs which provide optimum system performance for a variety of loads.
منابع مشابه
Long Term Power Load Combination Forecasting Based on Chaos-Fractal Theory in Beijing
Long term power load has a big impact on the development of industry of power. The forecasting models of linear systems even a single forecasting model of the nonlinear systems can not forecast the long term power load greatly. In the study, the combined forecasting model of nonlinear systems including chaos and fractal was established to improve the accuracy of the forecast. First, the charact...
متن کاملShort term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network
The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...
متن کاملA Robust Weighted Combination Forecasting Method Based on Forecast Model Filtering and Adaptive Variable Weight Determination
Medium-and-long-term load forecasting plays an important role in energy policy implementation and electric department investment decision. Aiming to improve the robustness and accuracy of annual electric load forecasting, a robust weighted combination load forecasting method based on forecast model filtering and adaptive variable weight determination is proposed. Similar years of selection is c...
متن کاملAnalysis and Forecast of Mining Accidents in Pakistan
In the mining sector, the barrier to obtain an efficient safety management system is the unavailability of future information regarding the accidents. This paper aims to use the auto-regressive integrated moving average (ARIMA) model, for the first time, to evaluate the underlying causes that affect the safety management system corresponding to the number of accidents and fatalities in the surf...
متن کاملFuzzy Ideology based Long Term Load Forecasting
Fuzzy Load forecasting plays a paramount role in the operation and management of power systems. Accurate estimation of future power demands for various lead times facilitates the task of generating power reliably and economically. The forecasting of future loads for a relatively large lead time (months to few years) is studied here (long term load forecasting). Among the various techniques used...
متن کامل